Oyster Mushroom

January 1970 - March 1997

Quick Bibliography Series no. QB 97-07

213 Citations in English from the AGRICOLA Database
July 1997

Compiled By:
Jerry Rafats
Reference Section
Reference and User Services Branch

Also available from:
Alternative Farming Systems Information Center, Information Centers Branch
National Agricultural Library, Agricultural Research Service, U. S. Department of Agriculture
Beltsville, Maryland 20705-2351

Go to:
About the Quick Bibliography Series
Document Delivery Information
National Agricultural Library Cataloging Record
Search Strategy
Author Index
Subject Index
Citation no.: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210

National Agricultural Library Cataloging Record:

Rafats, Jerry
Oyster Mushroom
(Quick bibliography series ; 97-07)
1. Pleurotus ostreatus. I. Title
aZ5071.N3 no.97-07

Search Strategy

SET DESCRIPTION
Oyster Mushroom

Go to: Author Index | Subject Index | Top of Document
Citation no.: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210

1. NAL Call No.: QD415.F4
A 13C [carbon isotope] nuclear magnetic resonance study of a gel-forming branched (1 to 3)-beta-D-glucan, A3, from Pleurotus ostreatus (Fr.) Quel. [an edible mushroom]: determination of side-chains and conformation of the polymer-chain in relation to gell-structure

2. NAL Call No.: 41.8-R312
Ability of the fungus Pleurotus pulmonarius to immobilise preparasitic nematode larvae.
First of a series.
Descriptors: ostertagia-ostertagi; cooperia-oncophora; cyathostoma-; oesophagostomum-quadrispinulatum; pleurotus-; nematicidal-properties; nematode-larvae; immobilization-; in-vitro; cuticle-; animal-parasitic-nematodes

Abstract: In vitro experiments showed that the oyster mushroom Pleurotus pulmonarius exerts a strong immobilising effect on preinfective larvae of the animal parasitic nematodes Ostertagia ostertagi, Cooperia oncophora, Oesophagostomum quadrispinulatum and Cyathostoma species. Infective stages of the same species seemed less vulnerable to fungal attack, possibly because they are protected by their outer cuticle.

3. NAL Call No.: 99.9-J2793
Acceleration of fruiting-body formation by edible mushrooms with sulfite waste components from soft- and hardwood cooking Pleurotus ostreatus, Flammulina velutipes, sawdust medium.
Includes 5 ref.

4.
NAL Call No.: TD930.A32
Acceptability and nutritive evaluation of Pleurotus harvested spent wheat straw in buffaloes.
Includes references.
Descriptors: buffalo-feeding; nutritive-value; wheat-straw; pleurotus-

5.
NAL Call No.: 464.8-IN2
Amino acid composition and protein distribution in Pleurotus cystidiosus [Edible mushrooms].
Includes references.

6.
NAL Call No.: SB353.M8
Amino acid composition of mushroom Pleurotus sajor-caju (Fr.) Singer
Descriptors: India-

7.
NAL Call No.: TD930.A32
Amino acid composition of the Mushroom, Pleurotus sajor-caju, cultivated on different agroresidues.
Includes references.
Descriptors: pleurotus-sajor-caju; residues-; amino-acids; biological-value; plant-analysis; proteins-

8.
NAL Call No.: SB353.M8
Artificial cultivation of Pleurotus sajor-caju (Fr.) Singer

9.
NAL Call No.: 448.3-C332
The balance of nitrogen and composition of proteins in Pleurotus ostreatus [fungi] grown on natural substrates

10.
NAL Call No.: QR1.M562
Bioconversion of sugar cane crop residues with white-rot fungi Pleurotus sp.
Includes references.
Descriptors: sugarcane-trash; fermentation-; microbial-degradation; crop-residues; pleurotus-sajor-caju; pleurotus-ostreatus; pleurotus-; lignin-; cellulose-; digestion-; feeds-; mushrooms-; chemical-composition; pleurotus-pulmonarius; solid-state-fermentation

11.
NAL Call No.: QH442.J69
Biodegradation of lignocellulosic agricultural wastes by Pleurotus ostreatus.
Descriptors: pleurotus-ostreatus; microbial-degradation; lignocellulose-; gossypium-hirsutum; stems-; crop-residues; digestibility-; lignin-; microbial-degradation; ruminant-feeding
12. NAL Call No.: TD930.A32
Biological efficiency and nutritive value of Pleurotus sajor-caju cultivated on different agro-wastes.
Includes references.
Descriptors: pleurotus-sajor-caju; agricultural-wastes; plant-residues; waste-utilization; nutritive-value; lignocellulose-; plant-nutrition; plant-analysis; energy-recovery; india-

13. NAL Call No.: QR1.E9
Biosynthesis of flavor compounds by microorganisms. 4. Characterization of the major principles of the odor of Pleurotus euosmuis [Food industry].
Includes references.

14. NAL Call No.: QH345.A1P73
Biosynthesis of group B vitamins by the fungus Pleurotus ostreatus in submerged culture.
Descriptors: pleurotus-ostreatus; vitamin-b-complex; culture-media; biosynthesis-

15. NAL Call No.: QR53.B56
Cellulolytic enzymes from an edible mushroom, Pleurotus sajor-caju.
Includes references.

16. NAL Call No.: QK600.C7
Changes in the protein fractions and crude fiber content of Pleurotus ostreatus and Stropharia rugosoannulata Fungi during the development.
8 ref.

17. NAL Call No.: 80-M972
Characteristics of some Pleurotus ostreatus strains from Florida, their practical and taxonomical importance.
16 ref.
Descriptors: Florida-

18. NAL Call No.: 448.8-J8236
Characterization of allergens from spores of the oyster mushroom, Pleurotus ostreatus.
Abstract: We studied the effect of the edible mushroom Pleurotus ostreatus (4% in diet containing 1% of cholesterol) on serum and liver lipids in female rats with hereditary enhanced sensitivity to alimentary cholesterol. We found that the consumption of the mushroom-containing diet prevented serum cholesterol increase which was manifested at the end of the 4th week of the experiment. At the end of the 7th week of the experiment the cholesterolemia was lowered by almost 40% as compared with control animals kept on the same diet but without the mushroom. The decrease in serum cholesterol levels is a consequence of the decreased cholesterol concentrations of very-low-density lipoproteins and of low-density lipoproteins.
NAL Call No.: QK608.I8M5
Includes references.

25.
NAL Call No.: S3.A25
Comparative study on mycelium growth and increase in Pleurotus species.
Includes references.
Descriptors: pleurotus-; edible-fungi; growth-; mycelium-; temperature-; thallus-

26.
NAL Call No.: QK600.E9
Comparison of polymorphism and phenetic variability as determined by the study of hydrolases and oxidoreductases in two cultivated mushrooms, Agaricus bisporus and Pleurotus cornucopiae.
Includes references.
Descriptors: agaricus-bisporus; pleurotus-cornucopiae; enzyme-polymorphism; isoenzymes-; oxidoreductases-; hydro-lyases-; zymodemes-; strain-differences; zymograms-

27.
NAL Call No.: 381-Ar2
The complete amino acid sequences of two serine proteinase inhibitors from the fruiting bodies of a basidiomycete, Pleurotus ostreatus.
Includes references.
Descriptors: pleurotus-ostreatus; serine-proteinases; proteinase-inhibitors; amino-acid-sequences; inhibition-; comparisons-; binding-site; molecular-sequence-data; sequence-alignment

Abstract: The complete amino acid sequences of two isomeric endogenous inhibitors, IA-1 and IA-2, both of which specifically inhibit an intracellular serine proteinase (proteinase A) purified from the fruiting bodies of a higher basidiomycete, Pleurotus ostreatus, were determined. Both inhibitors are acidic polypeptides with respective molecular masses of 8307 and 8244 Da, as determined by plasma desorption mass spectral analyses, and their N-terminal serine residue is blocked by acetylation. The fragments generated from the inhibitors by proteolytic and chemical cleavages were subjected to amino acid composition, sequence, and mass spectral analyses. The sequence and molecular mass information for the peptides established that the inhibitors both consisted of 76 amino acid residues and differed from each other in that aspartic acid and glutamic acid residues at residues 12 and 15 of IA-1 were replaced by glycine and aspartic acid in IA-2, respectively. The molecular masses of IA-1 and IA-2 were calculated to be 8309 and 8237, based on the sequence data. The action of carboxypeptidase Y on IA-1 resulted in a complete loss of the inhibitory activity along with successive release of glutamine and threonine from the C-terminus. Cyanogen bromide cleavage of Met38-Pro39 and Met41-Lys42 in IA-1 and hydroxylamine degradation of IA2 completely abolished their inhibitory activity. These results suggest that the whole molecules of both inhibitors are essential to their inhibitory activities. Their structural resemblance to propeptides of subtilisin family proteinases revealed their mechanism of action.

28.
NAL Call No.: 450-P5622
The composition of fresh and stored oyster mushrooms (Pleurotus ostreatus).
15 ref.
29. NAL Call No.: 64.8-M41
Composition of nutrients in the sclerotium of the mushroom Pleurotus tuber regium.
1987. v. 37 (2) p. 133-139.
Includes references.
Descriptors: mushrooms-; melon-seeds; proximate-analysis; amino-acids; mineral-content; meat-analogs; nutritive-value; nigeria-

30. NAL Call No.: TD930.A32
Composted cotton straw silage as a substrate for Pleurotus sp. cultivation.
Includes references.
Descriptors: pleurotus-; cultivation-; substrates-; agricultural-wastes; waste-utilization; cotton-waste; straw-; silage-; composting-; israel-

31. NAL Call No.: 450-J8212J
Content of vitamin B2 in cultivated strains of Agaricus bisporus (J.Lge) Imbach. and Pleurotus ostreatus (Fr.) Kumm.
Includes references.

32. NAL Call No.: SB353.I57-1981
Cotton waste is a good substrate for cultivation of Pleurotus ostreatus, the oyster mushroom.
Includes references.
Descriptors: pleurotus-ostreatus; cultivation-; substrates-; cotton-waste; chemical-composition; singapore-

33. NAL Call No.: SB353.M8
A cultivated Pleurotus for use in forest and uncultivatable areas of the temperature zone

34. NAL Call No.: 450-F55
Cultivation and nutritive value of pink mushroom (Pleurotus eous).
Includes references.

35. NAL Call No.: 450-F55
Cultivation and nutritive value of pink mushroom (Pleurotus eous).
Includes references.
36. NAL Call No.: 22-IN283
Cultivation of mushroom in northeastern hills region India, Agaricus bisporus, Pleurotus spp., Volvariella volvacea.
Descriptors: India-

37. NAL Call No.: 389.8-IN25
The cultivation of mushroom (Pleurotus flavellatus) on paddy straw packed in polyethylene bags with vents at room temperature

38. NAL Call No.: 22-IN283
Cultivation of oyster mushroom in Kalimpong region [Pleurotus sajor kaju, India].
Descriptors: India-

39. NAL Call No.: 22-IN283
Cultivation of oyster mushroom in Kalimpong region [Pleurotus sajor kaju, India].
Descriptors: India-

40. NAL Call No.: 99.9-AS12S
The cultivation of oyster mushroom (Pleurotus ostreatus) in saw-dust deprived from Abies, Larix, Quercus species treated in washing-heaping and heaping methods.
2 ref.

41. NAL Call No.: SB353.I57-1981
Cultivation of oyster mushroom (Pleurotus spp.) on cotton boll locules.
Includes references.
Descriptors: pleurotus-; cultivation-; yields-; substrates-; cotton-; boll-; nests-; pakistan-

42. NAL Call No.: QR1.M562
Cultivation of Pleurotus florida mushroom on rice straw and biogas production from the spent straw.
Includes references.
Descriptors: pleurotus-florida; rice-straw; growing-media; chemical-composition; methane-; biogas-; yields-; india-

43. NAL Call No.: SB299.P3D4
Cultivation of Pleurotus mushrooms on aspen wood shavings with cheese whey supplementation.
554. ill.
Descriptors: pleurotus-ostreatus; cultivation-methods; substrates-; populus-; wood-shavings; whey-; supplements-; crop-yield; mushrooms-; quality-

44.
NAL Call No.: TD930.A32
Cultivation of Pleurotus ostreatus (Jacq.) Fr. by utilising Lantana camara and waste paper.
Includes references.
Descriptors: pleurotus-ostreatus; paper-; wastes-; lantana-camara; cultivation-

45.
NAL Call No.: QK600.B7
Cultivation of Pleurotus ostreatus on used tea leaves [Edible fungi].
Includes references.

46.
NAL Call No.: QK600.B7
Cultivation of Pleurotus ostreatus on used tea leaves [Edible fungi].
Includes references.

47.
NAL Call No.: 99.9-UT72
Cultivation of Pleurotus ostreatus with leaves medium Mushroom culture.
Includes references.

48.
NAL Call No.: SB353.I57-1981
Cultivation of Pleurotus sajor caju (Fr.) Sing. mushroom.
Includes references.
Descriptors: pleurotus-sajor-caju; cultivation-methods; yields-; uttar-pradesh

49.
NAL Call No.: TD930.A32
Cultivation of Pleurotus sajor-caju on different wastes.
Includes references.
Descriptors: pleurotus-sajor-caju; mushroom-compost; morus-alba; ricinus-communis; leaves-; stems-; protein-content; crop-yield; cultivation-methods

50.
NAL Call No.: 464.8-IN2
Cultivation of Pleurotus sajor-caju on wood logs Edible mushroom fungus, best results obtained on logs of Mangifera indica (mangoes) and Artocarpus lakoocha.
3 ref.

51.
NAL Call No.: 500-OK42
Cultivation of Pleurotus tuber-regium (Fr) Sing on various farm wastes.
Includes references.
Descriptors: pleurotus-tuber-regium; agricultural-wastes; crop-yield; greenhouse-culture; substrates-;
corticium-rolfsii; fungi-; insect-pests; plant-parasitic-nematodes; weeds-; nigeria-

52.
NAL Call No.: SB299.P3D4
The cultivation of the oyster mushroom (Pleurotus ostreatus) in Italy.
Descriptors: pleurotus-ostreatus; cultivation-methods; crop-yield; italy-

53.
NAL Call No.: SB353.I57-1981
Cultivation of the oyster mushroom, Pleurotus ostreatus, on cotton waste.
Includes references.
Descriptors: pleurotus-ostreatus; cultivation-; yields-; substrates-; cotton-waste; singapore-

54.
NAL Call No.: 382-SO12
Cultivation of the oyster mushroom (Pleurotus ostreatus) on lignocellulosic waste.
Includes references.
Descriptors: pleurotus-ostreatus; cultivation-; waste-utilization; lignocellulose-

55.
NAL Call No.: SB353.M8
Cultivation trials of Pleurotus fossulatus edible fungi.
12 ref.

56.
NAL Call No.: 80-M972
8 ref.
57. NAL Call No.: TP1.J686
Degradation of rice straw by Pleurotus flabellatus.
Includes references.
Descriptors: rice-straw; pleurotus-flabellatus; lignin-; degradation-; nutritive-value; waste-utilization; feeds-; sugars-; amino-acids; laccase-; proteases-

58. NAL Call No.: QR1.M562
Degradation of tannins in spent coffee grounds by Pleurotus sajor-caju.
Includes references.
Descriptors: pleurotus-sajor-caju; tannins-; microbial-degradation; coffee-; instant-coffee; coffee-industry; industrial-wastes; feeds-; metabolic-detoxification

59. NAL Call No.: 448.3-AP5
Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions.
Includes references.
Descriptors: pleurotus-; wheat-straw; lignin-; cellulose-; hemicellulose-; crop-yield; cellulase-; digestibility-; residues-; degradation-

60. NAL Call No.: 470-C16C
 Destruction of nematodes by species of Pleurotus.
Includes references.
Descriptors: pleurotus-ostreatus; hyphae-; biology-; pleurotus-; species-; nematode-control; biological-control-organisms

61. NAL Call No.: 105.1-G344
Diseases and their control—possibilities after ten years Pleurotus culture in Belgium.
Includes references.
Descriptors: pleurotus-; fungal-diseases; plant-disease-control

62. NAL Call No.: 1.9-P69P
Dry bubble of oyster mushroom caused by Verticillium fungicola Pleurotus ostreatus.
20 ref.

63. NAL Call No.: 26-T754
Earthworm cast as a substitute for wheat supplementation in the growth of tropical edible mushroom, Pleurotus sajor-caju.
Includes references.
Descriptors: pleurotus-sajor-caju; rice-straw; soil-amendments; worm-casts; crop-yield; cellulose-digestion; orissa-

64. NAL Call No.: 99.9-J2793
Effect of addition of rice-bran in saw-dust medium on edible mushroom cultivation Pleurotus ostreatus, Agrocybe cylindracea, Lentinus edodes.
9 ref.

65. NAL Call No.: 464.8-IN2
Effect of carbon and nitrogen nutrition on growth of Pleurotus sajor-caju [Edible mushroom]

66. NAL Call No.: 22-M262
Effect of cultivation methods on sporophore production of Pleurotus sajor-caju (Fr.) Singer [Mushroom, yield].
Includes references.

67. NAL Call No.: 22-M262
Effect of cultivation methods on sporophore production of Pleurotus sajor-caju (Fr.) Singer [Mushroom, yield].
Includes references.

68. NAL Call No.: QR1.M562
Effect of lignin-derived phenolic monomers on the growth of the edible mushrooms Lentinus edodes, Pleurotus sajor-caju and Volvariella volvacea.
Includes references.
Descriptors: lentinula-edodes; pleurotus-sajor-caju; volvariella-volvacea; agricultural-wastes; lignin-; phenols-; tannins-; growth-; inhibition-

69. NAL Call No.: 22-M262
Effect of storage and age of spawn on the yield of Pleurotus sajor-caju.
Includes 4 references.
Descriptors: pleurotus-sajor-caju; crop-yield; storage-; age-; spawn-

70. NAL Call No.: TD930.A32
Effect of variation in size of containers on yield of Pleurotus sajor-caju.
71. NAL Call No.: 49-W89
**Effect of wheat straw upgraded by Pleurotus ostreatus on rumen fermentation and fattening performance of steers.**
Includes references.
Descriptors: steers-; cattle-fattening; wheat-straw; pleurotus-ostreatus; rumen-fermentation; fattening-performance; hungary-

72. NAL Call No.: QK600.H3
**The effects of the quantities of rice straw substrates and spawn on the yield of oyster mushroom Pleurotus ostreatus.**
13 ref.

73. NAL Call No.: TD930.A32
**Enzymology of ligno-cellulose degradation by Pleurotus sajor-caju during growth on paper-mill sludge.**
Includes references.
Descriptors: paper-mill-sludge; lignin-; cellulose-; degradation-; pleurotus-sajor-caju; enzymology-; enzyme-activity

74. NAL Call No.: 464.8-IN2
**Experimental cultivation of Pleurotus ostreatus white form in Jammu**

75. NAL Call No.: TD930.A32
**Fine structure and mechanical properties of straw filaments invaded by Pleurotus ostreatus.**
Includes references.
Descriptors: agricultural-wastes; wheat-; straw-; waste-treatment; biodegradation-; transmission-electron-microscopy; scanning-electron-microscopy; mechanical-properties; structure-; lignocellulose-; degradation-

76. NAL Call No.: 80-M972
**First experiments on the processing of Pleurotus ostreatus stipes for human consumption Lactic acid fermentation.**
77. NAL Call No.: TP368.C3
Food processing potential of the oyster mushroom (Pleurotus florida).
22 ref.

78. NAL Call No.: 448.3-AP5
Fruiting body formation from regenerated mycelium of Pleurotus ostreatus protoplasts.
Includes 9 references.
Descriptors: pleurotus-ostreatus; protoplasts--; mycelium--; fruiting-potential; yield-increases

79. NAL Call No.: QR1.E9
Fungal activities involved in lignocellulose degradation by Pleurotus [Fungi].
Includes references.

80. NAL Call No.: QK600.B7
Gastronomy: oyster mushrooms (Pleurotus ostreatus) with okra.
Descriptors: pleurotus-ostreatus; okras--; recipes--; wild-foods; mushrooms-

81. NAL Call No.: 80-B85
Heat requirement of Pleurotus strains in the period of growing mycelium. Laskagombatorzsek
hoigenye a miceliumnovekedes idoszakaban. Laskagombatorzsek hoigenye a miceliumnovekedes
idoszakaban.
9 ref.

82. NAL Call No.: QR1.M562
High laccase producing mutants of Pleurotus florida.
Includes references.
Descriptors: pleurotus-florida; laccase--; biosynthesis--; mutants--; mutagenesis-

83. NAL Call No.: TX341.F662
Houbitake, Pleurotus sajor-caju: antitumor activity and utilization.
In the special issue: Mushrooms: The versatile fungus--food and medicinal properties: chemistry,
biochemistry, biotechnology, and utilization / edited by T. Mizuno.
Descriptors: mushrooms--; provenance--; origin--; cultivation--; food-composition; nutrient-content;
antineoplastic-agents; polysaccharides--; foods--; chinese-cookery; literature-reviews; pleurotus-sajor-caju
NAL Call No.: 442.8-L62
Hypotensive and renal effects of an extract of the edible mushroom Pleurotus sajor-caju.
Includes 12 references.
Descriptors: pleurotus-sajor-caju; plant-extracts; hypotension-; kidneys-; pharmacology-

85.
NAL Call No.: 450-M99
Identity and cultivation of a new commercial mushroom in Taiwan [Pleurotus cystidiosus]
Descriptors: Taiwan-

86.
NAL Call No.: 49.9-H19
Improving the feedstuff value of rice straw inoculated with the Pleurotus ostreatus Saccardo.
Includes references.

87.
NAL Call No.: 451-B76
Incompatibility and growth in Pleurotus flabellatus Edible mushroom, mating system, commercial potential.
Bibliography p. 495.

88.
NAL Call No.: QR1.E9
Increased degradation of straw by Pleurotus ostreatus sp. 'Florida' Fungus might increase the digestibility by reducing lignin content.
Includes references.

89.
NAL Call No.: 25-P542
Indoor cultivation of edible mushroom Pleurotus ostreatus.
9 ref.

90.
NAL Call No.: 442.8-AN72
Induction of edible sclerotia of Pleurotus tuberregium (FR) Sing. in the laboratory.
Includes references.
Descriptors: pleurotus-tuber-regium; sclerotia-; growing-media; daniellia-oliveri; elaeis-guineensis; wood-dust; nigeria-


92.

Influence of ammonium nitrate and organic supplements on the yield of Pleurotus sajor caju (Fr.) Sing [Cultivated edible Fungi].

93.

Influence of carbon dioxide on lignin degradation and digestibility of lignocellulosics treated with Pleurotus sajor-caju.
Includes references.
Descriptors: pleurotus-sajor-caju; lignin-; wheat-straw; microbial-degradation; carbon-dioxide; aeration-; oxygen-; nitrogen-; in-vitro-digestibility

94.

Influence of CO2 [carbon dioxide] concentration on the mycelium growth of three Pleurotus species [Fungi]

95.

Influence of formaldehyde-treated soybean and commercial nutrient supplementation on mushroom (Pleurotus sajor-caju) yield and in-vitro dry matter digestibility of spent substrate.
Includes references.
Descriptors: pleurotus-sajor-caju; mushrooms-; wheat-straw; soybeans-; formaldehyde-; pretreatment-; crop-yield; in-vitro-digestibility; nutrient-requirements

Abstract: Pleurotus sajor-caju 537 was grown on chopped, pasteurized wheat straw non-supplemented and supplemented with formaldehyde-treated soybean, commercial delayed-release nutrient (SpawnMate II SE) or vegetable oil. Yield was 2.1-fold higher for substrate supplemented (12% dry wt) with low-volume formaldehyde-treated soybean as compared to non-supplemented substrate. Mushroom yield from substrate supplemented with commercial nutrient was 1.7-fold higher than yield from non-supplemented substrate. As the supplement level increased, the mushroom yield response increased. The yield ranged from 3.56 kg/m2 for non-supplemented substrate to 7.36 kg/m2 for substrate supplemented (12% dry wt) with formaldehyde-treated soybean. The type of supplement affected in vitro dry matter digestibility (IVDMD) of spent substrate; commercial supplement resulted in higher IVDMD compared to formaldehyde-treated substrate. An opportunity exists for commercial development of a nutrient(s) specifically designed for Pleurotus cultivation.

96.

Influence of the growth of Pleurotus sajor-caju (Fr.) Singer on lignin content of the substrates Edible fungus.
97. **NAL Call No.: QK600.M8**  
**Intracellular appearance, morphological features and properties of oyster mushroom virus.**  
Includes references.  
Descriptors: pleurotus-sapidus; pleurotus-ostreatus; plant-viruses; ultrastructure-; rna-; genome-analysis; protein-analysis; immunochemistry-; disease-transmission; translocation-; cell-walls; fruiting-stage; dolipore-septa; double-stranded-rna

98. **NAL Call No.: SB353.M8**  
**Introducing: Pleurotus flabellatus [mushroom] for your dinner table**  

99. **NAL Call No.: SB353.I57-1981**  
**Introducing the cultivation of Pleurotus florida in the plains of India.**  
Includes references.  
Descriptors: pleurotus-florida; cultivation-methods; india-

100. **NAL Call No.: QR1.E9**  
**Lignocellulose degradation during growth of the mushroom Pleurotus sp. "Florida" on cotton straw Waste utilization.**  
Includes 6 ref.

101. **NAL Call No.: 448.3-D49**  
**Lignocellulosic agricultural wastes degraded by Pleurotus ostreatus [Agaricus bisporus, Coprinus lagopus, Fungi]**  

102. **NAL Call No.: QK617.T28**  
**Lipid composition of Pleurotus spp. (dhingri) [Edible mushrooms, Nutritional status].**  
Includes references.

103. **NAL Call No.: QK617.T28**  
**Lipid composition of Pleurotus spp. (dhingri) [Edible mushrooms, Nutritional status].**  
Includes references.

104. **NAL Call No.: 442.8-AN72**  
**Lipid metabolism of Pleurotus sajor caju.**  
Address of the President of the Association of Applied Biologists at a meeting held at the University of St
Andrews on September 26, 1989.

Descriptors: pleurotus-sajor-caju; lipid-metabolism; malate-dehydrogenase; triacylglycerol-lipase; enzyme-activity; precursors-; growth-; mycelium-; plant-tissues; sporophore-

105.

NAL Call No.: 442.8-AN72
Lipid profile of Pleurotus sajor caju.
Includes references.
Descriptors: pleurotus-sajor-caju; lipid-content; mycelium-; lipid-metabolism

Go to: Author Index | Subject Index | Top of Document
Citation no.: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210

106.
NAL Call No.: QK617.T28
Metabolism and culture of Pleurotus [spidus], the oyster mushrooms [using cellulosic materials].
17 ref.

107.
NAL Call No.: aS21.A8U5/ARS
The metabolism of fatty substances by the oyster mushroom [Pleurotus sapidus, Pleurotus ostreatus, reprinted from Mushroom Science, Proceedings of the 9th International Scientific Congress on the Cultivation of Edible Fungi, Tokyo]

108.
NAL Call No.: 385-AG8B
A method for the high yield preparation of and high frequency regeneration of basidiomycete, Pleurotus ostreatus ("Hiratake"). protoplasts using sulfite pulp waste components.
Includes references.
Descriptors: pleurotus-ostreatus; regeneration-; protoplasts-; sulfites-; pulp-mill-effluent; protoplast-fusion

109.
NAL Call No.: 99.9-AS12S
Methods of cultivating Pleurotus cornucopiae mushroom in a saw-dust-added medium.

110.
NAL Call No.: 22-IN283
Mushroom cultivation for small farmers Pleurotus sajorcaju, "Dhingri", India.
Descriptors: India-
111. NAL Call No.: 156.65-P69
Mushroom plant, Pleurotus ostreatus Kummeri.
Descriptors: pleurotus-ostreatus; varieties-; patents-; plant-production; growing-media; usa-

Abstract: This novel selection of Pleurotus ostreatus exhibits a vigorous growth characteristic which is recognized to be a good growth habit. The morphology of this selection has a desirable color, texture and appearance. The production of this selection is good, with efficiency above 100% in a three flush evaluation.

112. NAL Call No.: 80-M972
Nitrogen fixation by Pleurotus.
13 ref.

113. NAL Call No.: TP368.C3
Nitrogen sources and the growth response of Pleurotus ostreatus mushroom mycelium.
Includes references. Descriptors: pleurotus-ostreatus; mycelium-; culture-media; nutrient-sources; nitrogen-; growth-; submerged-culture

114. NAL Call No.: S539.I4G8
A note on comparative growth of five species of Pleurotus under different temperature, light and humidity conditions [Cultivated mushrooms, India].
Includes references. Descriptors: India-

115. NAL Call No.: S539.I4G8
A note on comparative growth of five species of Pleurotus under different temperature, light and humidity conditions [Cultivated mushrooms, India].
Includes references. Descriptors: India-

116. NAL Call No.: 450-M99
Nutrition of Pleurotus sapidus [Fungi]: effects of lipids

117. NAL Call No.: 80-J825
Nutrition of the mushroom Pleurotus flabellatus during its growth on paddy straw substrate.
Includes references. Descriptors: pleurotus-flabellatus; plant-nutrition; straw-; substrates-; nitrogen-; crop-yield
118. NAL Call No.: 49-J82
Nutritional evaluation of wheat straw incubated with the edible mushroom, Pleurotus ostreatus
Ruminants.
Streeter, C. L.; Conway, K. E.; Horn, G. W.; Mader, T. L. J-Anim-Sci. Champaign, Ill., American Society
Includes 11 ref.

119. NAL Call No.: 25-P542
Nutritional requirements of Pleurotus ostreatus (Fr.) Kummer Oyster mushroom.
Quimio, T. H.; Sardsus, U. Philipp-Agric. Los Banos, Laguna, College of Agriculture and Central
Experiment Station, University of the Philippines. Jan/Mar 1981. v. 64 (1) p. 79-89.
Includes 11 ref.

120. NAL Call No.: 450-M994
Nutritional studies on species and mutants of Lepista, Cantharellus, Pleurotus and Volvariella

121. NAL Call No.: SB353.I57-1981
Nutritive value of mushroom Pleurotus florida.
Khanna, P.; Garcha, H. S. Proceedings of the Eleventh International Scientific Congress on the
Cultivation of Edible Fungi, Australia, 1981 / edited by N.G. Nair, A.D. Clift. Sydney : [s.n.], 1981. v. 2
p. 561-572.
Includes references.
Descriptors: pleurotus-florida; mushrooms-; nutritive-value; chemical-composition; in-vitro-digestibility

122. NAL Call No.: SB353.M8
Nutritive value of mushroom Pleurotus sajor-caju (Fr.) Singer

123. NAL Call No.: TX501.F6
Nutritive value of some Nigerian edible mushrooms Termitomyces robustus, T.Clypeatus,
Pleurotus tuber-regium.
(4) p. 263-268.
2 p. ref.
Descriptors: Nigeria-

124. NAL Call No.: QD415.A1J62
Olive milling wastewater as a medium for growth of four Pleurotus species.
Sanjust, E.; Pompei, R.; Rescigno, A.; Rinaldi, A.; Ballero, M. Appl-Biochem-Biotechnol v.31(3): p.223-
235. (1991 Dec.)
Includes references.


Abstract: Two extracellular oxidase enzymes proposed to play a role in lignin depolymerisation, laccase (polyphenol oxidase) and veratryl alcohol oxidase (VAO), were isolated from ligninolytic cultures of Pleurotus sajor-caju. The enzymes were produced in agitated, mycological broth cultures and were isolated after 12 days from supernatants by precipitation and chromatography. Two purified VAO enzymes had very similar physical and biochemical properties. They oxidised a variety of aromatic primary alcohols to aldehydes with reduction of oxygen to hydrogen peroxide. Sequential treatment of the laccase substrate ABTS with laccase and then VAO and veratryl alcohol produced first appearance and then disappearance of characteristic colors. A reduction-oxidation cycle is proposed for the two enzymes in depolymerisation of phenolic substructures of lignin.


Abstract: In Wistar rats fed after weaning a semisynthetic diet containing 0.3% cholesterol (C), the addition of 4% dried whole oyster mushroom (Pleurotus ostreatus) led to a reduced level of serum and liver C at the end of the 10th week of the experiment by 25, resp. 33%. The level of serum triacylglycerols was not influenced by the mushroom, but was significantly reduced by 13% in liver. The decrease in serum C level is a consequence of the decreased C concentration in very-low-density lipoproteins (VLDL) and in low-density lipoproteins (LDL). Content of C in high-density lipoproteins (HDL) was not influenced by the mushroom. Dietary Pleurotus ostreatus increased the fractional turnover rate of LDL (by 28%) and HDL (by 31%) as determined by the analysis of decay curves of (125)I-labelled lipoproteins. The increase in rate of LDL and HDL catabolism is one of the decisive mechanisms which mediates the hypocholesterolemic effect of mushroom in rat.

129.  
**NAL Call No.: 382-SO12**  
**Peat extract as a carbon source for the growth of Pleurotus ostreatus mycelium.**  
Includes references.  
**Descriptors:** pleurotus-ostreatus; nutrition-; nutrient-sources; carbon-; peat-; extracts-  
**Abstract:** The submerged culture of edible mushroom mycelium has been studied because of its potential to produce food, food additives and food supplements. One of the species of edible mushrooms which have been cultivated in submerged culture for the production of mycelial biomass is Pleurotus ostreatus. The growth of P ostreatus on peat and its mycelium cultivation in peat extracts have also been reported.

130.  
**NAL Call No.: 451-K51B**  
**Pleurotus (Agaricales) [Fungi] in India, Nepal and Pakistan**  
**Descriptors:** India-; Nepal-; Pakistan-  

131.  
**NAL Call No.: 475-SCI23**  
**Pleurotus eous (Berk) Sacc.: a new cultivated mushroom**  

132.  
**NAL Call No.: TD930.A32**  
**Pleurotus florida for upgrading the nutritive value of wheat straw.**  
Includes references.  
**Descriptors:** wheat-straw; pleurotus-florida; nutritive-value; upgrading-; feeds-; waste-utilization; digestibility-  

133.  
**NAL Call No.: SB353.M8**  
**Pleurotus florida mushrooms production in Borota, Hungary.**  
**Descriptors:** Hungary-  

134.  
**NAL Call No.: SB299.P3D4**  
**Pleurotus mushroom grows well in tobacco medium.**  
**Descriptors:** pleurotus-; growing-media; tobacco-; wastes-; cultivation-methods  

135.  
**NAL Call No.: TP368.C7**  
**Pleurotus mushrooms. II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food.**  
Literature review.  
**Descriptors:** pleurotus-; mushrooms-; chemical-constituents-of-plants; nutrient-contents-of-plants;
**Abstract**: The edible mushroom, Pleurotus, has been discovered to have nutritional and medicinal value. The problems and prospects of processing the fruit bodies are discussed. The potential for production and consumption of the fruit bodies are discussed.
141. NAL Call No.: 80-M97
Pleurotus ostreatus has great possibilities. [Culture]

142. NAL Call No.: SB353.M8
Pleurotus sajor-caju.
Descriptors: pleurotus-sajor-caju; mushrooms-; cultivation-methods; substrates-; fungal-diseases; pathogens-; arthrobotrys-; symptoms-; chemical-control; arthrobotrys-pleurotis

143. NAL Call No.: 475-SCI23
Pleurotus sajor-caju (Fr.) Singer, a protein rich nitrogen fixing mushroom fungus

144. NAL Call No.: 475-SCI23
Pleurotus sajor-caju (Fr.) Singer, a protein rich nitrogen fixing mushroom fungus

145. NAL Call No.: 450-M99
Pleurotus tuber-regium [Fungi] from Nigeria
Descriptors: Nigeria-

146. NAL Call No.: TP368.J6
Post-harvest physiology and storage of the white oyster mushroom Pleurotus flabellatus.
Includes references.

147. NAL Call No.: TS1171.T3
Preliminary studies on biodegradation of wheat straw (Triticum aestivum L.) by oyster mushroom (Pleurotus ostreatus Jacq.) aimed at producing biopulp.
Includes references.
Descriptors: wheat-straw; triticum-aestivum; biodegradation-; pleurotus-ostreatus; pulping-; wood-destroying-fungi; pulp-and-paper-industry; biotechnology-

148. NAL Call No.: TD930.A32
The production of exo-enzymes by Lentinus edodes and Pleurotus ostreatus and their use for upgrading corn straw.
Includes references.
Descriptors: lentinula-edodes; pleurotus-ostreatus; monophenol-monooxygenase; cellulase-; maize-straw; chemical-composition; digestibility-; fermentation-; pulping-; paper-; production-; biotechnology-; waste-utilization; italy-; xylanase-; delignification-; submerged-fermentation; paper-handsheets

149. NAL Call No.: QR1.E9
Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii.
Includes references.
Descriptors: pleurotus-eryngii; hydrogen-peroxide; production-; oxidoreductases-

Abstract: Production of extracellular hydrogen peroxide by fungal oxidases is been investigated as a requirement for lignin degradation. Aryl-alcohol oxidase activity is described in extracellular liquid and mycelium of Pleurotus eryngii and studied under non-limiting nitrogen conditions. This aryl-alcohol oxidase catalyses conversion of primary aromatic alcohols to the corresponding aldehydes and H2O2, showing no activity with aliphatic and secondary aromatic alcohols. The enzyme is stable at pH 4.0-9.0, has maximal activity at 45 degrees-50 degrees C and pH 6.0-6.5, is inhibited by Ag, Pb2+ and NaN3, and has a Km of 1.2 mM using veratryl alcohol as substrate. A single protein band with aryl-alcohol oxidase activity was found in zymograms of extracellular and intracellular crude enzyme preparations from P. eryngii.

150.
NAL Call No.: QR1.I58
Production of mushroom food and crop fertilizer from organic wastes Volvariella volvacea, Pleurotus sajor-caju.
Includes 4 ref.

Go to: Author Index | Subject Index | Top of Document
Citation no.: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210

151.
NAL Call No.: QK1.A28
Production of Pleurotus sajor-caju, and edible tropical mushroom, on agricultural wastes.
Includes references.
Descriptors: pleurotus-sajor-caju; mushrooms-; crop-production

152.
NAL Call No.: 448.3-C33-3
Production of protein by fungi from agricultural wastes. II. Effect of carbon/nitrogen ratio on the efficiency of substrate utilization and protein production by Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus.
19 ref.

153.
NAL Call No.: 448.3-C33-3
Production of protein by fungi from agricultural wastes. III. Effect of phosphorus on the efficiency of substrate utilization and protein production by Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus.
7 ref.
154. NAL Call No.: 448.3-C33-3
Production of protein by fungi from agricultural wastes. IV. Effect of certain inorganic salts on the efficiency of substrate utilization and protein production by Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus.
20 ref.

155. NAL Call No.: 448.3-C33-3
Production of protein by fungi from agricultural wastes. V. Effect of various organic acids and growth promoters on the efficiency of substrate utilization and protein production by Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus.
15 ref.

156. NAL Call No.: 448.3-C33-3
Production of protein by fungi from agricultural wastes. VI. Quality of the protein formed in Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus.
Bibliography p. 621-622.

157. NAL Call No.: 448.3-C33-3
Production of protein by fungi from agricultural wastes. I. Standardization of certain factors for maximum protein production.
Bibliography p. 595-596.

158. NAL Call No.: QK600.B7
Profiles of fungi. 4. Pleurotus dryinus (Pers.: Fr.) Kummer.
Spooner, B. M.; Pegler, D. N. Mycologist v.21(pt.2): p.75. ill. (1987 Apr.)
Includes references.
Descriptors: pleurotus-; taxonomy-; geographical-distribution; wood-destroying-fungi; fungal-diseases

159. NAL Call No.: QR1.F46
Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus.
Descriptors: pleurotus-eryngii; ligninolytic-microorganisms; wheat-straw; lignin-; pulping-; laccase-; ultrastructure-

Abstract: During screening of basidiomycetes for wheat straw delignification, considerable lignin degradation with a limited attack to cellulose was attained with Pleurotus eryngii. Straw solid-state fermentation (SSF) was optimized, and the enzymatic mechanisms for lignin degradation were investigated. No lignin peroxidase was detected under liquid or SSF conditions, but high laccase and aryl-
alcohol oxidase levels were found. The latter enzyme has been fully characterized in Pl. eryngii and it seems to be involved in a cyclic redox system for H2O2 generation from aromatic compounds. Results obtained using homoveratric acid suggest that Pleurotus laccase could be involved in degradation of phenolic and non-phenolic lignin moieties. Histological and ultrastructural studies provided some general morphological characteristics of the fungal attack on wheat straw. Whereas a simultaneous degradation pattern was observed in straw treated with Phanerochaete chrysosporium, Pl. eryngii caused partial degradation of middle lamella and separation of individual sclerenchymatic fibers. When these straw samples were subjected to refining tests, energy saving after biological treatment was the highest in the case of straw treated with Pl. eryngii, which also produced the lowest substrate loss. From these results, a correlation between preferential removal of lignin, separation of sclerenchymatic fibers and pulping properties was provided during fungal treatment of wheat straw.

160.
NAL Call No.: QR1.E9
Includes references.
Descriptors: pleurotus-sajor-caju; growing-media; recycling-; lentinula-edodes; waste-utilization; calcium-carbonate; soybeans--; supplements--; spawn--; crop-yield; size--; biological-efficiency

Abstract: Pleurotus sajor-caju was produced on a basal medium containing "spent" shiitake substrate plus 10% wheat bran and 10% millet. An analysis of the fibrous composition of the spent shiitake substrate revealed that 85% of the original hemicellulose, 44% of the original cellulose and 77% of the original lignin was not consumed during production of a full crop (78% biological efficiency) of shiitake (63-day harvest period). To produce P. sajor-caju, the spent shiitake substrate was ground, air dried, supplemented, pasteurized with live steam and spawned. Highest yields (79% biological efficiency) of P. sajor-caju were obtained by supplementing the spent shiitake basal medium with 12% soybean and 1% CaCO3. Increases in percentage biological efficiency and mushroom size were positively correlated with increasing levels of CaCO3 added to the basal medium.

161.
NAL Call No.: TD930.A32
Includes references.
Descriptors: pleurotus-ostreatus; rice-husks; biodegradation--; feeds--; fermentation--; nutritive-value; ruminants--; digestibility--; pakistan-

162.
NAL Call No.: TP248.24.B55
Includes references.
Descriptors: pleurotus-florida; sugarbeet-pulp; fungal-protein; protein-synthesis; saccharification--; protein-content

163.
NAL Call No.: SB1.H6
Includes references.
Descriptors: lentinula-edodes; pleurotus-ostreatus; substrates--; apple-pomace; sawdust--; mixtures--; crop-yield; new-york

Abstract: A mixture of apple pomace and sawdust was tested as a s production of shiitake [Lentinula edodes (Berk.) Pegler] and oyster mushroom [Pleurotus ostreatus (Jacq. ex Fr.) Kummer and P. sajor-caju
Fr.) Sing.] on synthetic logs. My- celia grew faster and more densely in logs containing apple pomace than in sawdust alone. Five shiitake isolates and two Pleurotus spp. produced higher fresh weights on a mixture of equal parts (by weight) of apple pomace and sawdust than on either substrate alone. An alternative substrate based on sawdust, millet (Panicum miliaceum L.) and wheat (Triticum aestivum L.), bran gave almost identical overall yield as pomace-sawdust medium, but there was a significant differential effect of the substrates on yield of the two tested shiitake isolates. Analyses and experiments in vitro suggested that optimal N levels provided by apple pomace account in part for its effectiveness.

164. NAL Call No.: QD415.A1J62

Solid-state fermentation of agricultural wastes into food through pleurotus cultivation.
Includes references.
Descriptors: agricultural-wastes; fermentation-; pleurotus-ostreatus; mushrooms-; crop-production; food-composition; substrates-; mangoes-; dates-; rice-straw; maize-cobs; nutritive-value; carbohydrates-; lipids-; nucleic-acids; protein-content; amino-acids; mineral-content

Abstract: The technical feasibility of using agricultural wastes (mango and date industry wastes) as a substrate for the cultivation of Pleurotus ostreatus NRRL-0366 is evaluated. When comparing the biological efficiency of mushroom production, the highest yield of fruiting bodies was obtained using a mixture of date waste and rice straw at a ratio (1:1) (11.96%), followed by a mixture 3:1 (11.16%). The lowest one was the mixture 2:1 (9.19%). Fungus Pleurotus ostreatus NRRL-0366 can also be cultivated on mango waste supplemented with rice straw at a different ratio. The best one was the 1:1 mixture (10.18%), whereas the lowest was a mixture 3:1 (6.4%). Comparing the results obtained favored the use of date waste as a substrate for growing Pleurotus ostreatus NRRL-0366. Spawn was cultured on three different substrates as follows: Date waste alone (I); 1:1 (by wt) date waste and rice straw (II); 1:1:1 date waste, rice straw, and corncobs (III). Final dry weight and composition of the fruiting bodies are tabulated for the three sets of conditions. Date waste and rice straw mixture (II) is a good source of nonstarchy carbohydrate (67%) and protein (27.44%) containing amounts of essential amino acids, especially lysine and low RNA (3.81%). Elemental analysis were studied in the fruit bodies of the three media.

165. NAL Call No.: QR1.E9

Solid state fermentation of orange peel and grape stalks by Pleurotus ostreatus, Agrocybe aegerita, and Armillariella mellea.
Includes references.
Descriptors: orange-peel; grape-residues; pleurotus-ostreatus; agrocybe-aegerita; armillaria-mellea; fermentation-; feeds-

166. NAL Call No.: 80-M972

Some aspects on the cultivation of Pleurotus flabellatus in India.
15 ref.
Descriptors: India-

167. NAL Call No.: 22-M262

Spawn composition on the sporophore yield of oyster mushroom.
Includes references.
168. NAL Call No.: SB353.I5
Spawn production of Agaricus bisporus and Pleurotus sajor-caju in glass milk bottles using rubber cork of glucose bottles—a substitute for non-absorbent cotton.
Includes references.

169. NAL Call No.: SB353.I5
Spawn production of Agaricus bisporus and Pleurotus sajor-caju in glass milk bottles using rubber cork of glucose bottles—a substitute for non-absorbent cotton.
Includes references.

170. NAL Call No.: QK617.T28
Sporeless strains—A necessity in the production of Pleurotus ostreatus.
Eger, G. Taiwan-Mushrooms. Taipei, T'ai-wan yang ku tsa chi she. Nov 1977. v. 1 (3) p. 79-82. ill. 5 ref.

171. NAL Call No.: 389.8-IN25
Standardization of mushroom (Pleurotus Sp.) pickle in oil

172. NAL Call No.: TX612.M8S3
Descriptors: Mushrooms-Preservation; Pleurotus-; Autolysis-

173. NAL Call No.: TD930.A32
Studies of the cultivation of Pleurotus tuber-regium (FR) Sing. le mushroom.
Includes references.
Descriptors: pleurotus-tuber-regium; growing-media; cultivation-; nigeria-

174. NAL Call No.: RM1.C5
Studies on antitumor activity of some fractions from Basidiomyces. i. an antitumor acidic polysaccharide fraction of Pleurotus ostreatus (Fr.) Quel

175. NAL Call No.: SB950.P47
Studies on chemical control of sciarid fly of mushroom (Pleurotus sajor-caju) [Lycoriella auripila].
Includes references.
Studies on chemical control of sciarid fly of mushroom (Pleurotus sajor-caju) [Lycoriella auripila].
Includes references.

Studies on constituents of edible fungi. II. Chemical constituents of Pleurotus ostreatus.
Includes 25 references.
Descriptors: edible-fungi; chemical-constituents-of-plants; pleurotus-

Includes references.
Descriptors: mushrooms-; pleurotus-tuber-regium; proximate-analysis; mineral-content; yields-; cultivation-; organic-wastes; cellulose-; sclerotia-

Abstract: Studies were conducted on the growth and cultivation of Pleurotus tuber-regium on local cellulosic wastes. Andropogon tectorum straw supported the greatest mycelial growth, and cotton and oil palm pericarp wastes supported the least. For cultivation of edible sclerotia, cotton waste and rice straw gave the highest yield and banana leaves gave the lowest. However, with regard to protein, lipid, ethanol-soluble sugar, crude fibre, calcium and magnesium contents, the sclerotia grown on banana leaves were the richest. In contrast, the sclerotia cultivated on corn cob were the poorest in sodium, potassium, calcium, magnesium and phosphorus contents. In all the sclerotia cultivated on banana leaves, corn cob, cotton waste and rice straw, protein and potassium were the most abundant nutrients. These results are discussed in relation to the prospect of cultivating P. tuber-regium in Nigeria.

Studies on preservation possibilities of the oyster mushroom (Pleurotus sp.) with lactic acid fermentation. Untersuchungen uber Konservierungsmoglichkeiten des Austernpilzes (Pleurotus sp.) durch Milchsauregarung.

Studies on the cultivation period of Pleurotus ostreatus and Flammulina velutipes [Mushrooms].
Includes references.

Studies on the cultivation period of Pleurotus ostreatus and Flammulina velutipes [Mushrooms].
Includes references.
182. 
NAL Call No.: 80-AC82
Studies on the metabolic activity of oyster mushrooms (Pleurotus ostreatus Jacq).
Descriptors: pleurotus-ostreatus; controlled-atmosphere-storage; temperature-; atmosphere-; composition-; postharvest-physiology; respiration-rate; storage-decay; carbohydrates-

183. 
NAL Call No.: S584.K8H3
Studies on the physio-chemical properties and the cultivation of oyster mushroom (Pleurotus ostreatus).
44 ref.

184. 
NAL Call No.: TX501.F6
Studies on the requirements for vegetative growth of Pleurotus tuber-regium (Fr.) Singer, a Nigerian mushroom.
Includes references.
Descriptors: mushrooms-; pleurotus-tuber-regium; nutrient-requirements; mycelium-; growth-; carbohydrates-; nitrogen-; carbon-; ratios-; trace-elements; vitamins-; plant-growth-regulators; minerals-; plant-nutrition

Abstract: Growth requirements of Pleurotus tuber-regium (Fr.) Singer, a Nigerian edible mushroom, were studied. Among the carbohydrates tested, glucose was the most utilised. This was followed in order by mannitol, maltose, and dextrin, which significantly enhanced mycelial growth (P < 0.01). Cellulose was the least stimulatory. Of the nitrogen compounds tested, yeast extract supported the greatest growth, which was comparable with that induced by glucose. This was followed in order by asparagine, casein, glycine, and calcium nitrate. Sodium nitrate, potassium nitrate, and ammonium sulphate supported the poorest growth. The best C/N ratio that sustained good growth was 1:4. This was followed by 4:1. Similarly, thiamine, pyridoxine, GA3 (1 and 10 ppm), 2,4-D (10 ppm), Ca, K, Cu, and Zn supported relatively good mycelial growth. The implication of these results is discussed in relation to the cultivation of P. tuber-regium in Nigeria.

185. 
NAL Call No.: 464.8-IN2
Studies on vitamin requirements of some edible fungi [Pleurotus sojor-caju Podaxis pistillaris, Phellorina inquinans]

186. 
NAL Call No.: S19.F63
A study of certain cultivation aspects of oyster mushroom (Pleurotus sajor-caju (Fr.) Singer.)

187. 
NAL Call No.: QH345.A1P73
Study of oxidative enzymes of the lignin-degrading fungus Pleurotus ostreatus
Translated from Prikladnaia Biokhimiiia Mikrobiologiia 11 (4): 535-538. (385 P93)
188. NAL Call No.: TX541.D33
Study of the growth and biomass composition of the edible mushroom Pleurotus Ostreatus.
In the series analytic: Food science and human nutrition / edited by G. Charalambous.
Descriptors: pleurotus-ostreatus; culture-media; growth-; chemical-composition; proximate-analysis; amino-acids

189. NAL Call No.: QK617.T28
Study on the effects of environmental factors light intensity, temperature, humidity on development of abalone mushroom (Pleurotus abalonus).
9 ref.
Descriptors: Taiwan-

190. NAL Call No.: 475-SCI23
Trace element nutrition of mushroom Pleurotus sajorcaju (Fr.) Singer

191. NAL Call No.: 470-C16D
The tripartite relationship in gill-knot disease of the oyster mushroom, Pleurotus ostreatus
Includes references.
Descriptors: pleurotus-ostreatus; plant-diseases; tylenchidae-; plant-parasitic-nematodes; entomophilic-nematodes; life-cycle; diptera-; disease-vectors; fungal-morphology; plant-pathology; honshu-; iotonchium-; rhymosia-domestica; fruiting-bodies; knot-formation

192. NAL Call No.: 391.8-T66
Twenty-five cases of poisoning by the mushroom Pleurotus olearius

193. NAL Call No.: SB353.I57-1981
The use of cotton seed hulls for the cultivation of Pleurotus sajor-caju in Australia.
Includes references.
Descriptors: pleurotus-sajor-caju; cultivation-; substrates-; cottonseed-husks; environmental-factors; mycelium-; growth-; australia-

194. NAL Call No.: QD1.A45
Use of hemicelluloses and cellulose and degradation of lignin by Pleurotus sajor-caju grown on corn
stalls.

In the series analytic: Agricultural and synthetic polymers, biogradability and utilization / edited by J.E. Glass and G. Swift.

Descriptors: pleurotus-sajor-caju; lignin-; degradation-; mycelium-; biomass-; cellulose-; hemicelluloses-; maize-stover

Abstract: Pleurotus sajor-caju is capable of utilizing polysaccharides (cellulose + hemicelluloses) from corn stalks pretreated with 1.5% sodium hydroxide at 121 degrees C for 1 h. The final product, mycelial biomass, contained about 40% crude protein which can be used as a food or feed. During fermentation of polysaccharides, lignin (oligolignols) of corn stalks was depolymerized into oligolignols of progressively lower molecular weight (MW). However, there is some evidence that repolymerization of oligolignols of low MW into oligolignols of high MW is also occurring.

195.

NAL Call No.: SB299.P3D4
Use of one-year old canes of deciduous trees for inoculation material of Pleurotus ostreatus.
Descriptors: pleurotus-ostreatus; inoculation-; materials-; woody-plants; canes-and-rattans; mycelium-; growth-rate; wood-pieces

196.

NAL Call No.: SF380.73.15P47-1983
Includes references.
Descriptors: sheep-feeding; rice-straw; nutritive-value; pleurotus-; feed-intake; digestibility-; indonesia-

197.

NAL Call No.: SB299.P3D4
The use of polyethylene film to control the fructification of Pleurotus spp. grown on horizontal trays.
Descriptors: pleurotus-; cultivation-methods; trays-; polyethylene-film; mushroom-casing-soils

198.

NAL Call No.: SB1.H6
Using basidiospores of the oyster mushroom to prepare grain spawn for mushroom cultivation.
Includes 10 references.

199.

NAL Call No.: S322.S55S55
Utilisation of cotton waste substrate with temperature treatment for the cultivation of oyster mushroom (Pleurotus) in Singapore.
Utilization of coffee waste as a source of carbon for the production of fungal protein (SCP) as animal feed, Pleurotus ostreatus.
16 ref.

Utilization of fat and degradation of cholesterol by Pleurotus spp. Fungi.
10 ref.

Utilization of Job's-tears husk, peanut shell, lawn grass and porous stone for cultivation of oyster mushroom (Pleurotus ostreaus (Jacq. ex Fr) Quel.) [Japan].
Includes references.

Utilization of lignocellulosic waste by the edible mushroom, Pleurotus.

Utilization of poplar [Populus] wood by Pleurotus ostreatus (Jacq. ex Fr.) Kummer [wood-decaying fungi] in the presence of thiamine, urea and lime
206. NAL Call No.: QH301.I54
Utilization of waste paper and tea leaves to cultivate Pleurotus ostreatus Oyster mushroom.
Includes 9 ref.
Descriptors: India-

207. NAL Call No.: TD930.A32
Utilization of water hyacinth for oyster mushroom cultivation.
Includes references.
Descriptors: pleurotus-sajor-caju; horticulture-; biomass-; eichhornia-crassipes; rice-straw; substrates-; mushroom-culture

208. NAL Call No.: 64.8-M41
Vitamin values of Pleurotus mushrooms.
Includes references.
Descriptors: pleurotus-flabellatus; pleurotus-eous; pleurotus-sajor-caju; pleurotus-florida; vitamin-content; india-

209. NAL Call No.: SB353.M8
Waste materials for the cultivation of Pleurotus sajor-caju Oyster mushroom, India.
6 ref.
Descriptors: India-

210. NAL Call No.: QR1.L47
Whey permeate as a growth medium for Pleurotus ostreatus and Lentinus edodes.
Includes references.
Descriptors: lentinula-edodes; pleurotus-ostreatus; cell-culture; culture-media; whey-; ultrafiltration-; monophenol-monooxygenase; biosynthesis-

211. NAL Call No.: 448.3-AP5
Yellow blotch of Pleurotus ostreatus.
Includes 18 references.
Descriptors: pleurotus-ostreatus; pseudomonas-; california-; pseudomonas-agarici

212. NAL Call No.: QR1.E9
Yield and size of Pleurotus ostreatus and Pleurotus sajor-caju as effected by delayed-release
nutrient.
Includes references.
Descriptors: pleurotus-ostreatus; pleurotus-sajor-caju; mushrooms-; growth-; wheat-straw; maize-cobs;
substrates-; nutrient-intake

213.
NAL Call No.: SB353.I57-1981
Yield performance of different strains of oyster mushrooms (Pleurotus spp.) on paddy straw in Pakistan.
Includes references.
Descriptors: pleurotus-ostreatus; pleurotus-florida; pleurotus-sajor-caju; yields-; rice-straw; substrates-; pakistan-
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camarero, S.</td>
<td>159</td>
</tr>
<tr>
<td>Carilli, A.</td>
<td>165</td>
</tr>
<tr>
<td>Cedano, M.</td>
<td>137</td>
</tr>
<tr>
<td>Chahal, D.S.</td>
<td>194</td>
</tr>
<tr>
<td>Chakrabarti, N.</td>
<td>38, 39</td>
</tr>
<tr>
<td>Chakravarty, D.K.</td>
<td>50, 175, 176</td>
</tr>
<tr>
<td>Chakravorty, D.K.</td>
<td>110</td>
</tr>
<tr>
<td>Chandrashekar, T.R.</td>
<td>87</td>
</tr>
<tr>
<td>Chang, H.G.</td>
<td>72</td>
</tr>
<tr>
<td>Chang, S.T.</td>
<td>68, 84, 150</td>
</tr>
<tr>
<td>Chatterjee, M.L.</td>
<td>175, 176</td>
</tr>
<tr>
<td>Cheng, H.</td>
<td>189</td>
</tr>
<tr>
<td>Chet, I.</td>
<td>79, 88, 100</td>
</tr>
<tr>
<td>Chincho, S B</td>
<td>186</td>
</tr>
<tr>
<td>Cho, K.Y.</td>
<td>104, 105, 193</td>
</tr>
<tr>
<td>Cohen Arazi, E.</td>
<td>21</td>
</tr>
<tr>
<td>Conway, K.E.</td>
<td>118</td>
</tr>
<tr>
<td>Coxworth, E.C.</td>
<td>59</td>
</tr>
<tr>
<td>D'Annibale, A.</td>
<td>148</td>
</tr>
<tr>
<td>Danai, O.</td>
<td>30</td>
</tr>
<tr>
<td>Das, A.K.</td>
<td>63</td>
</tr>
<tr>
<td>Dash, M.C.</td>
<td>63</td>
</tr>
<tr>
<td>De Leo, P.</td>
<td>24</td>
</tr>
<tr>
<td>Deandrea, G.</td>
<td>56</td>
</tr>
<tr>
<td>Dhaliwal, R.P.S.</td>
<td>82</td>
</tr>
<tr>
<td>Di Lena, G.</td>
<td>148, 162, 210</td>
</tr>
<tr>
<td>Di Mattia, E.</td>
<td>148</td>
</tr>
<tr>
<td>Dohmee, N.</td>
<td>27</td>
</tr>
<tr>
<td>Drawert, F.</td>
<td>13</td>
</tr>
<tr>
<td>Eden, G.</td>
<td>139</td>
</tr>
<tr>
<td>Eger, G.</td>
<td>17, 139, 170</td>
</tr>
<tr>
<td>Ekuere, U.U.</td>
<td>178</td>
</tr>
<tr>
<td>Eliseeva, G.S.</td>
<td>14</td>
</tr>
<tr>
<td>Etugo, J.E.</td>
<td>173</td>
</tr>
<tr>
<td>Fagade, O.E.</td>
<td>123</td>
</tr>
<tr>
<td>Fales, S.L.</td>
<td>95</td>
</tr>
<tr>
<td>Fasidi, I.O.</td>
<td>178, 184</td>
</tr>
<tr>
<td>Feniksova, R V</td>
<td>187</td>
</tr>
<tr>
<td>Filippi, C.</td>
<td>75</td>
</tr>
<tr>
<td>Fukuoka, F.</td>
<td>1, 174</td>
</tr>
<tr>
<td>Fung, K.P.</td>
<td>84</td>
</tr>
<tr>
<td>Futai, K.</td>
<td>191</td>
</tr>
<tr>
<td>Gallon, J.R.</td>
<td>138</td>
</tr>
<tr>
<td>Garcha, H.S.</td>
<td>82, 99, 102, 103, 121</td>
</tr>
<tr>
<td>Ghai, S.K.</td>
<td>200</td>
</tr>
<tr>
<td>Ginter, E.</td>
<td>23, 127</td>
</tr>
<tr>
<td>Ginterova, A.</td>
<td>9, 138, 201</td>
</tr>
<tr>
<td>Golobic, V</td>
<td>192</td>
</tr>
<tr>
<td>Gonzalez, A.E.</td>
<td>10</td>
</tr>
<tr>
<td>Gorodecki, B.</td>
<td>11, 204</td>
</tr>
<tr>
<td>Guille, F.</td>
<td>149, 159</td>
</tr>
<tr>
<td>Gupta, J.K.</td>
<td>42</td>
</tr>
<tr>
<td>Gupta, S.</td>
<td>5, 22, 34, 35</td>
</tr>
<tr>
<td>Gupta, V.K.</td>
<td>4, 132</td>
</tr>
<tr>
<td>Gutierrez, A.</td>
<td>159</td>
</tr>
<tr>
<td>Guzman Davalos, L.</td>
<td>137</td>
</tr>
</tbody>
</table>
Hachey, J.M. 194
Hadar, Y. 11, 21, 79, 88, 204
Hammond, J.B.W. 28
Han, Y.H. 189
Hanners, P.K. 198
Hansen, H. 182
Harsh, N.S.K. 44, 45, 46, 206
Hartadi, H. 196
Hashimoto, Y. 27
Heltay, I. 91, 133
Henics, Z. 71
Henis, Y. 88, 100
Holley, M.P. 104
Hong, J.S. 183
Hongdi, L. 97
Horn, G.W. 118
Horner, W.E. 18
Hromadova, M. 128
Ibanez, M.D. 18
Idei, T. 47
Iijiama, Y. 108
Iino, K. 202, 203
Iizuka, Y. 3
Ikekawa, T. 174
Inaba, K. 3
Iracabal, B. 26
Janardhanan, K K 74
Jandaik, C.L. 6, 8, 65, 122, 185, 190
Janotkova, O. 201
Jauhri, K.S. 152, 153, 154, 155, 156, 157
Jelen, P. 43, 77
Jiang, J.Y. 105
Jong, S.C. 85
Jordan, D.C. 211
Jurcovicova, M. 23
Jwanny, E.W. 164
Kaiying, C. 97
Kakimoto, Y. 78
Kandasamy, T.K. 167
Kandaswami, T.K. 143, 144
Kandaswamy, T.K. 66, 67, 96, 209
Kaneshiro, T. 101
Kannan, K. 73
Kapoor, J.N. 6, 65, 122, 185
Karunanandaa, K. 95
Kashiwagi, Y. 78
Kaul, T.N. 74
Kausar, A.G. 213
Kaushal, S.C. 42
Kazuno, C. 177
Kerem, Z. 11, 204
Kerrigan, R.W. 211
Khan, S.M. 41, 213
Khanna, P. 99, 102, 103, 121
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khanna, P.K.</td>
<td>82</td>
</tr>
<tr>
<td>Kim, B.H.</td>
<td>86</td>
</tr>
<tr>
<td>Kiyomizu, Y.</td>
<td>64</td>
</tr>
<tr>
<td>Ko, S.J.</td>
<td>72</td>
</tr>
<tr>
<td>Kocyigit, A.E.</td>
<td>195</td>
</tr>
<tr>
<td>Kolte, S.O.</td>
<td>151</td>
</tr>
<tr>
<td>Kondo, T.</td>
<td>64</td>
</tr>
<tr>
<td>Kosaka, H.</td>
<td>191</td>
</tr>
<tr>
<td>Koshijima, T.</td>
<td>3</td>
</tr>
<tr>
<td>Kress, Margarethe.</td>
<td>179</td>
</tr>
<tr>
<td>Kumar, S.</td>
<td>168, 169</td>
</tr>
<tr>
<td>Kumari, L.</td>
<td>157</td>
</tr>
<tr>
<td>Kummer, D.A.</td>
<td>111</td>
</tr>
<tr>
<td>Kuniak, L.</td>
<td>23</td>
</tr>
<tr>
<td>Kurtzman, R H Jr.</td>
<td>107</td>
</tr>
<tr>
<td>Kurtzman, R.H. Jr.</td>
<td>106, 112, 116</td>
</tr>
<tr>
<td>Labarere, J.</td>
<td>26</td>
</tr>
<tr>
<td>Langar, P.N.</td>
<td>4, 132</td>
</tr>
<tr>
<td>Lanzi, G.</td>
<td>52</td>
</tr>
<tr>
<td>Larsen, M.</td>
<td>2</td>
</tr>
<tr>
<td>Lasota, W.</td>
<td>19</td>
</tr>
<tr>
<td>Lee, T.W.</td>
<td>86</td>
</tr>
<tr>
<td>Lehrer, S.B.</td>
<td>18</td>
</tr>
<tr>
<td>Lelley, J</td>
<td>141</td>
</tr>
<tr>
<td>Lepidi, A.A.</td>
<td>75</td>
</tr>
<tr>
<td>Levanon, D.</td>
<td>30</td>
</tr>
<tr>
<td>Li, S.F.</td>
<td>17</td>
</tr>
<tr>
<td>Li Shing Tat, B.</td>
<td>43</td>
</tr>
<tr>
<td>Liengswangwong, V.</td>
<td>18</td>
</tr>
<tr>
<td>Loganathan, B.G.</td>
<td>73</td>
</tr>
<tr>
<td>Lovino, V.S.</td>
<td>24</td>
</tr>
<tr>
<td>Madan, M.</td>
<td>7, 12, 15, 49, 70</td>
</tr>
<tr>
<td>Mader, T.L.</td>
<td>118</td>
</tr>
<tr>
<td>Magae, Y.</td>
<td>78</td>
</tr>
<tr>
<td>Manu Tawiah, W.</td>
<td>20, 113, 129</td>
</tr>
<tr>
<td>Maretic, Z</td>
<td>192</td>
</tr>
<tr>
<td>Margraf, W.</td>
<td>125</td>
</tr>
<tr>
<td>Mariappan, C.</td>
<td>207</td>
</tr>
<tr>
<td>Marlowe, A.</td>
<td>62</td>
</tr>
<tr>
<td>Martin, A.M.</td>
<td>20, 113, 129, 188</td>
</tr>
<tr>
<td>Martinez, A.T.</td>
<td>149, 159</td>
</tr>
<tr>
<td>Martinez, D.</td>
<td>140</td>
</tr>
<tr>
<td>Martinez, E.O.</td>
<td>10</td>
</tr>
<tr>
<td>Martinez, M.</td>
<td>137</td>
</tr>
<tr>
<td>Martinez, M.J.</td>
<td>149, 159</td>
</tr>
<tr>
<td>Massignan, L.</td>
<td>24</td>
</tr>
<tr>
<td>Maxianova, A.</td>
<td>9</td>
</tr>
<tr>
<td>Mehta, V.</td>
<td>42</td>
</tr>
<tr>
<td>Minelli, V.</td>
<td>148</td>
</tr>
<tr>
<td>Misra, P.S.</td>
<td>5, 22, 34, 35</td>
</tr>
<tr>
<td>Miura, H.</td>
<td>177</td>
</tr>
<tr>
<td>Mizuno, T.</td>
<td>83</td>
</tr>
<tr>
<td>Mori, T.</td>
<td>202, 203</td>
</tr>
<tr>
<td>Mukhopadhyay, S.N.</td>
<td>7</td>
</tr>
<tr>
<td>Munoz, C.</td>
<td>159</td>
</tr>
<tr>
<td>Murugesan, A.G.</td>
<td>207</td>
</tr>
</tbody>
</table>
Nagano, S. 180, 181
Nagaraja, N. 37, 166
Nair, N.G. 104, 105, 193
Neuhauser, K. 13
New, P.B. 193
Nicolini, L. 165
Noda, M 174
Nwokolo, E. 29
Oblisami, G. 73
Oda, K. 40, 109
Oddson, L. 77
Ogundana, S.K. 123
Ohki, T 1
Okhuoya, J.A. 51, 90, 173
Okogbo, F.O. 51, 90
Olorunmaiye, K.S. 184
Omori, S. 180, 181
Ortega, G.M. 10
Oso, B A 145
Otero, M.A. 10
Ozdin, L. 127, 128
Park, Y.H. 72
Pathak, N.C. 5, 34, 35
Patil, C.U. 151
Patwardhan, M.V. 117, 146
Pegler, D N 130, 158
Pelayo, J.M. 159
Peng, J T 85
Pettipher, G.L. 54
Phillips, R. 80
Pingyan, L. 97
Platt, M.W. 79, 88, 100
Pompei, R. 124
Poo Chow, L. 199
Poppe, J. 61
Prakash, D. 22
Puice, M.G. 126
Puniya, A.K. 93
Puri, Y.N. 55
Quaglia, G.B. 162
Quimio, T.H. 89, 98, 119
Rajarathnam, S. 57, 87, 117, 131, 135, 136, 146, 166, 208
Ramasamy, K 143, 144
Rangaswami, G 143, 144
Rashad, M.M. 164
Rawal, P.P. 114, 115
Rehill, P.S. 55
Reid, I.D. 59
Rescigno, A. 124
Rimoczi, I. 16
Rinaldi, A. 124
Romaine, C.P. 62
Royse, D.J. 95, 160, 212
Ruel, K. 159
Russell, F E 192
Saito, H 1
Salvaggio, J.E. 18
San Antonio, J.P. 198
Sanjust, E. 124
Sardsus, U. 119
Sarkar, B.B. 50, 110, 175, 176
Sasaki, T. 78
Schiesser, A. 75
Schisler, L.C. 212
Schmitz, H. 76
Schmitz, Helga. 172
Sen, A. 152, 153, 154, 155, 157
Sermanni, G.G. 148, 210
Sethi, R.P. 200
Shah, F.H. 161
Sharma, B.N. 200
Sharma, S. 49
Shida, H. 40, 109
Shinde, P A 186
Silanikove, N. 30
Singh, B. 55
Singh, M.S. 34, 35
Singh, N S 131, 171
Singh, R.D. 114, 115
Singh, R.P. 48
Sivaprakasam, K. 66, 67, 69, 96, 167, 209
Soedomo 196
Soeyono, M. 196
Solomko, E.F. 14
Somani, R.B. 151
Song, C.H. 104, 105
Sood, S.M. 200
Soto Velazco, C. 137
Spooner, B.M. 158
Streeter, C.L. 118
Sukumaran, N. 207
Suman, B.C. 168, 169
Sylwestrzak, J. 19
Szabo, I. 81
Takats, T 205
Takio, K. 27
Takizawa, N. 40, 109
Tam, S.C. 84
Tan, K.K. 32, 53
Tattum, B. 105
Teltumde, R.M. 151
Thorn, R.G. 60
Tolentino, P.R. 134
Totani, G. 75
Tsang, L.J. 59
Tsuda, K. 191
Tsumuraya, Y. 27
U.S. Agricultural Research Service. 107
Uddin, S. 5
Ulezlo, I V 187
Uporova, T M 187
Upreti, J.C. 206
| Varela, E. | 159 |
| Vasudevan, P. | 49, 70 |
| Verma, R.N. | 36 |
| Vetter, J. | 16, 25 |
| Vijayalakshmi, G.S. | 207 |
| Vine, J.H. | 105 |
| Vitale, N.S. | 148 |
| Volodina, E.P. | 31 |
| Volz, P A | 120 |
| Von Hunolstein, C. | 165 |
| Wang, X. | 58 |
| Wankhede, D.B. | 57 |
| Welvaert, W. | 61 |
| Wissig, E | 139 |
| Wong, Y.S. | 58 |
| Worrall, J.J. | 163 |
| Yalinkilic, M.K. | 147 |
| Yamashita, I. | 202, 203 |
| Yanagi, S.O. | 108 |
| Yanai, S. | 202, 203 |
| Yang, C.S. | 163 |
| Yau, C.K. | 150 |
| Yip, K.P. | 84 |
| Yoshida, E. | 180, 181 |
| Yoshioka, Y | 1, 174 |
| Yoshizawa, N. | 47 |
| Zadrazil, F. | 92, 93, 94 |
| Zafar, S.I. | 161 |
| Zhuang, C. | 83 |

Go to: Author Index | Subject Index | Top of Document
Citation no.: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210

Subject Index

- aeration 93
- agaricus-bisporus 26
- age 60
- agricultural-wastes 12, 30, 51, 68, 75, 137, 140, 164, 204
- arthrobotrys-aegerita 165
- alcohol-oxidoreductases 12
- allergens 18
- allergies 18
- amino-acid-sequences 27
- amino-acids 7, 29, 57, 164, 188
- animal-parasitic-nematodes 2
- anticholesteremic-agents 127, 128
- antineoplastic-agents 83
- apple-pomace 163
- armillaria-mellea 165
- arthrobotrys 142
- arthrobotrys-pleuroti 142
crop-production 124, 137, 151, 164
crop-residues 10, 11
crop-yield 43, 49, 51, 52, 59, 63, 69, 70, 95, 117, 160, 163
cultivation 30, 32, 41, 44, 45, 53, 54, 70, 83, 136, 173, 178, 193
cultivation-methods 43, 48, 49, 52, 99, 134, 142, 197
culture-media 14, 113, 188, 210
culture-methods 21
cuticle 2
cyathostoma 2
daniellia-oliveri 90
dates 164
degradation 57, 59, 73, 75, 194
delignification 148
detoxification 124
dict 23, 127
diets 128
digestibility 11, 59, 132, 148, 161, 196
digestion 10
diptera 191
disease-transmission 97
disease-vectors 191
dolipore-septa 97
double-stranded-rna 97
edible-fungi 25, 137, 140, 177, 204
eichhornia-crassipes 207
elaeis-guineensis 90
energy-recovery 12
entomophilic-nematodes 191
environmental-factors 193
enzyme-activity 73, 104, 126, 128
enzyme-polymermorphism 26
enzymology 73
extracts 129
fattening-performance 71
feed-intake 196
feeds 10, 57, 58, 132, 161, 165
fees 204
fermentation 10, 21, 148, 161, 164, 165, 204
Florida 17
food-analysis 20
food-composition 83, 164
food-preservation 135
foods 83
formaldehyde 95
fruiting-bodies 191
fruiting-potential 78
fruiting-stage 97
fungal-diseases 61, 142, 158
fungal-morphology 137, 191
fungal-protein 162
fungi 51
gel-filtration 18
 genome-analysis 97
genealogical-distribution 158
gossypium-hirsutum 11
grape-residues 165
greenhouse-culture 51
growing-media 42, 90, 111, 134, 160, 173
growth 25, 68, 104, 113, 137, 140, 184, 188, 193, 212
growth-rate 195
hemicellulose 59
hemicelluloses 194
high-cholesterol-diets 128
honshu 191
horticulture 207
Hungary 71, 133
hydro-lyases 26
hydrogen-peroxide 149
hydroxymethylglutaryl-coa-reductase 128
hypercholesterolemia 127
hyphae 60
hypotension 84
immobilization 2
immunochemistry 97
in-vitro 2
in-vitro-digestibility 93, 95, 121, 204
India 6, 12, 36, 38, 39, 42, 99, 110, 114, 115, 166, 206, 208, 209
India-; Nepal-; Pakistan 130
indonesia 196
industrial-wastes 58
ingestion 128
inhibition 27, 68, 128
inoculation 195
insect-pests 51
instant-coffee 58
iotonchium 191
isoenzymes 26
isolation 126
israel 30
italy 52, 148
Japan 202, 203
kidneys 84
knot-formation 191
laboratory-methods 140
laccase 57, 82, 124, 126, 159
lantana-camara 44
leaves 49
lentinula-edodes 68, 148, 160, 163, 210
life-cycle 191
lignin 10, 11, 57, 59, 68, 73, 93, 159, 194, 204
ligninolytic-microorganisms 126, 159
lignocellulose 11, 12, 54, 75, 136, 204
lipid-content 105
lipid-metabolism 104, 105, 127
lipids 164
lipoproteins 23, 127
literature-reviews 83
liver 23, 128
low-cholesterol-diets 128
low-density-lipoprotein 128
maize-cobs 164, 212
maize-stover 194
maize-straw 148
malate-dehydrogenase 104
mangoes 164
materials 195
meat-analogs 29
mechanical-properties 75
melon-seeds 29
metabolic-detoxification 58
methane 42
mexico 137, 140
microbial-degradation 10, 11, 58, 93
microsomes 128
milling 124
mineral-content 29, 164, 178
minerals 184
mixtures 163
molecular-sequence-data 27
monophenol-monoxygenase 148, 210
morus-alba 49
mushroom-casing-soils 197
mushroom-compost 49, 137
mushroom-culture 207
mushrooms 10, 23, 29, 43, 80, 83, 95, 121, 124, 127, 128, 135, 142, 151, 164, 178, 184, 212
Mushrooms-Preservation 172
mutagenesis 82
mutants 82
mycelium 20, 25, 78, 104, 105, 113, 184, 193, 194, 195
nematicidal-properties 2
nematode-control 60
nematode-larvae 2
nests 41
new-york 163
nigeria 29, 51, 90, 123, 145, 173
nitrogen 93, 113, 117, 184
nucleic-acids 164
nutrient-content 83
nutrient-contents-of-plants 135
nutrient-intake 212
nutrient-requirements 95, 184
nutrient-sources 113, 129
nutrition 129
nutritional-value 135
nutritive-value 4, 12, 29, 57, 121, 132, 161, 164, 196
oesophagostomum-quadrispinulatum 2
okras 80
olives 124
orange-peel 165
organic-wastes 178
origin 83
orissa 63
ostertagia-ostertagi 2
oxidoreductases 26, 149
oxygen 93
pakistan 41, 161, 213
paper 44, 148
paper-handsheets 148
paper-mill-sludge 73
patents 111
pathogens 142
peat 129
pharmacology 84
phenolic-compounds 124
phenols 68
plant-analysis 7, 12
plant-disease-control 61
plant-diseases 191
plant-extracts 18, 84
plant-growth-regulators 184
plant-nutrition 12, 117, 184
plant-parasitic-nematodes 51, 191
plant-pathology 191
plant-production 111
plant-residues 12, 204
plant-tissues 104
plant-viruses 97
pleurotus 2, 4, 10, 25, 30, 41, 59, 60, 61, 134, 135, 136, 137, 158, 172, 177, 196, 197, 204
pleurotus-cornucopiae 26
pleurotus-eous 208
pleurotus-eryngii 124, 149, 159
pleurotus-flabellatus 57, 117, 208
pleurotus-florida 42, 82, 99, 121, 124, 132, 162, 208, 213
pleurotus-pulmonarius 10
pleurotus-sajor-caju 7, 10, 12, 48, 49, 58, 63, 68, 69, 70, 73, 83, 84, 93, 95, 104, 105, 124, 126, 142, 151, 160, 193, 194, 207, 208, 212, 213
pleurotus-sapidus 97
pleurotus-tuber-regium 51, 90, 173, 178, 184
polyethylene-film 197
polysaccharides 83
populus 43
postharvest-physiology 135, 136, 182
precursors 104
pretreatment 95
production 148, 149
production-possibilities 135
proteases 57
protein-analysis 97
protein-content 49, 162, 164
protein-synthesis 162
proteinase-inhibitors 27
proteins 7
protoplast-fusion 108
protoplasts 78, 108
provenance 83
proximate-analysis 29, 135, 178, 188
pseudomonas 211
pseudomonas-agarici 211
pulp-and-paper-industry 147
pulp-mill-effluent 108
pulping 147, 148, 159
quality 43